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Spectral analysis of heart rate sequences is commonly used to investigate neuroauthonomic control of heart
rate by means of two indexes, the low and the high frequency power. For tilt test data of normal subjects we
compare the spectral indexes with new indexes defined within the framework of symbolic analysis. We define
two classes of binary words of length 4: the first class is related to “acceleration” of heart rate and the second
class to “stationary behavior.” The new indexes measure the change in frequency of the two classes before and
after the tilt. Data analysis of 13 normal subjects shows that the behavior of the new indexes is in agreement
with that of spectral ones.
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I. INTRODUCTION

Head up tilt �HUT� test can be used to evaluate how the
human body regulates blood pressure and heart rhythm in
response to some very simple stresses. The HUT test ana-
lyzed in this paper consists of monitoring patients in two
different conditions. First the patient remains in a supine
position for twenty minutes; then, after the supine heart rate
and blood pressure are obtained, the patient is tilted using a
motorized table with a foot-board and remains in an inclined
position for another twenty minutes. During this test an elec-
trocardiogram �ECG� is performed and blood pressure is
measured. The tilt is believed to produce changes in the neu-
roauthonomic controls consisting in an increment of the
sympathetic activity and a decrease of the parasympathetic
�vagal� activity. These controls can be studied by using the
RR sequence, which is defined as the sequence of time inter-
vals between two consecutive R peaks in the ECG.

In this paper we compare two methods for analyzing the
neuroauthonomic control on heart rate during the HUT test:
the well established method of spectral analysis and a more
recent one based on symbolic analysis. Spectral analysis of
the RR sequences has been used for providing quantitative
indexes of cardiac sympathetic and vagal modulation under
many circumstances including the HUT test; see Refs. �1,2�
and references therein.

The symbolic method is based on the general framework
of symbolic analysis of time series, which has already re-
vealed useful in the analysis of the RR sequence �3–8�. This
method consists in coding the data series into a symbolic
series and estimating the probability distribution of words or
permutations. Recently a comparison between spectral analy-
sis and nonlinear dynamics methods, but not including sym-
bolic ones, has been performed on the RR sequence �9�. We
refer to this work also for some references about the contro-
versies in the applications of spectral analysis. On the other
hand, symbolic analysis has been used also for analyzing
24 hour RR sequences for patients with positive HUT test
�7�. Note however that in this work symbolic analysis has not
been used to analyze the tilt test itself.

In this paper we study the results of a HUT test of a group
of 13 healthy subjects both with spectral analysis and sym-
bolic analysis in order to compare the results: both methods
clearly detect the modification occurring in the RR sequences
due to the tilt, suggesting that also symbolic analysis could
be used as a marker of the sympathovagal activity. We sum-
marize the two methods and give the corresponding data
analysis in the next two sections; in the last section we dis-
cuss some differences between them.

II. SPECTRAL ANALYSIS

We briefly recall the basics of spectral analysis of discrete
signals �10�. Every discrete signal xt , t=0, . . . ,N−1 can be
written as

xt = �
j=0

N−1

c�f j�e2�if jt, �1�

where f j = j /N, j=0, . . . , �N−1� and

c�f� =
1

N
�
t=0

N−1

xte
−2�ift. �2�

The frequencies f j are called harmonic frequencies and de-
pend on the number N of the signal samples. The vector c
= (c�f0� , . . . ,c�fN−1�) is called discrete Fourier transform of
x. As a consequence of orthonormality relations of complex
exponentials, one has �x�=N�c�. In general, c�1− f�=c�−f�
and moreover, if x is real, c�−f�=c�f�. The raw periodogram
of a real discrete signal is the function defined, for each f in
the interval 0� f �

1
2 , by I�f�=N�c�f��2. If xt is the RR se-

quence, one integrates the log of the raw periodogram in the
0.04–0.15 Hz and 0.15–0.4 Hz ranges. These intervals are
called low frequency �LF� and high frequency �HF� intervals
and the integrals low frequency and high frequency power of
the signal. Each of them can be normalized by the frequency
power in the 0.4–0.5 interval to yield normalized low fre-
quency power �NLFP� and normalized high frequency power
�NHFP�, respectively. It is widely assumed that NHFP re-
flects parasympathetic activity and NLFP reflects sympa-
thetic activity �1,2�. If the sequence is assumed to be a sta-
tionary Gaussian process Xt, t=0, . . . ,N−1, it is possible to
define the spectral density which characterizes the process
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�11�. This density can be estimated in two ways. The first one
is a moving average of the row periodogram with respect to
a window of suitable length. The second one consists in es-
timating the coefficients �i of an autoregressive model of
order p, AR�p�, defined by

Xi = �1Xi−1 + ¯ + �pXi−p + Zi,

where Zi�N�0,�2� is an independent Gaussian sequence.
The coefficients �i define a polynomial Q�z�=1+�1z+ ¯

+�pzp. The spectral density of AR�p� is the function

�2

�Q�e−2�if��2

defined for f ��0, 1
2
�. The use of AR models for estimating

the spectral density is common in medical literature �2�. We
have checked that using the periodogram or AR models for
estimating spectral densities makes little difference for the
purposes of this paper. In Fig. 1 the RR sequence and the
corresponding spectrum before and after the tilt are shown.
The area of the spectral density above the HF interval be-
comes smaller after the tilt. The order of the AR models are
automatically estimated by using the Akaike information cri-
terion by the software used for analyzing the data, which is
the public domain statistical package R �12�. We define the
index �NLFP as the difference between NLFP after the tilt
and NLFP before the tilt and the index �NHFP as the differ-
ence between NHFP after the tilt and NHFP before the tilt.
The values of the spectral indexes computed in our database
are reported in Table I. Both the sign tests for the positivity
of �NLFP and for the negativity of �NHFP give a p-value
less than 0.0003.

III. SYMBOLIC ANALYSIS

For coding a segment of a time series into a binary word
we use the following method �5�. If Z2 denotes the set 	0,1
,
the set Z2

n is identified to the set of binary words of length n.
We define a function W :Rn+1→Z2

n in the following way:
W�x1 , . . . ,xn+1�= (w�1� , . . . ,w�n�), where

w�i� = �0, if xi � xi+1,

1, if xi � xi+1.
� �3�

For example, W�181,32,42,115,130�= �0,1 ,1 ,1�. For a
given time series we code each segment of consecutive n

TABLE I. In this table we report spectral indexes computed with log-raw periodogram. All values are rounded. Rows refer to patients.
Column NLFPb contains the normalized low frequency power index before the tilt. Column NLFPt contains the same after the tilt. Column
�NLFP contains the difference between the first two. Column �nlfp contains the relative difference, i.e., the ratio of the third column to
one-half of the sum of the first two. The remaining four columns are built in the same way by using the normalized high frequency power
index.

Spectral indexes

Low frequency High frequency

NLFPb NLFPt �NLFP �nlfp NLHPb NLHPt �NHFP �nhfp

0.29 0.36 0.08 0.23 0.55 0.50 −0.05 −0.10

0.38 0.47 0.09 0.21 0.51 0.43 −0.08 −0.16

0.27 0.32 0.04 0.14 0.54 0.52 −0.02 −0.03

0.31 0.44 0.12 0.32 0.52 0.48 −0.04 −0.07

0.25 0.28 0.02 0.09 0.57 0.54 −0.03 −0.06

0.36 0.43 0.07 0.18 0.53 0.43 −0.09 −0.20

0.28 0.33 0.05 0.16 0.53 0.50 −0.03 −0.05

0.29 0.35 0.05 0.17 0.55 0.50 −0.04 −0.08

0.30 0.35 0.06 0.17 0.55 0.49 −0.06 −0.11

0.28 0.31 0.04 0.12 0.56 0.51 −0.05 −0.09

0.29 0.32 0.03 0.10 0.54 0.50 −0.04 −0.08

0.29 0.39 0.10 0.28 0.54 0.48 −0.06 −0.12

0.27 0.32 0.05 0.16 0.57 0.53 −0.04 −0.08

FIG. 1. The first and second panels show the RR sequences
before and after the tilt for a typical case. The third and fourth
panels show the autoregressive estimates of the corresponding spec-
tral power densities.
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+1 values into a length n binary word as above. This allows
one to consider, for each n, the histogram of length n binary
words. This histogram is computed in the following way.
Given a data series x1 , . . . ,xN we compute, for each binary
word �, the number of matchings of the word in the data
series, i.e., the number of segments si= �xi ,xi+1 , . . . ,xi+n� ex-
tracted from the data series such that W�si�=�. Note that in
this work the segments si’s are not disjoint. For example, the
binary words of length 4 extracted from the series
	181,32,42,115,130,100,87,123,91,121,123,124,132
 are
	�0,1,1,1�, �1,1,1,0�, �1,1,0,0,�, �1,0,0,1�, �0,0,1,0�, �0,1,0,1�,
�1,0,1,1�, �0,1,1,1�, �1,1,1,1�
. The histogram gives, for each
word, its relative frequency in the data series, i.e., the num-
ber of occurrences divided by the total number of extracted
words. The model we adopt in order to describe our data is
that the observed sequence x1 , . . . ,xN is considered to be a
realization of the sequence of random variables X1 , . . . ,XN.
The dependence among the variables is given by the joint
distribution of the k+1 dimensional vectors �Xi , . . . ,Xi+k�
which does depend on i if we assume that the sequence is
stationary. The observed data are not sufficient to estimate
the joint distribution even for small values of k; the histo-
gram of binary words captures however some relevant fea-
tures of the dependence among the variables. Simple but
important operations can be defined for words. The shift of
the word �a1 , . . . ,an−1 ,an� is the word �an , . . . ,a1 ,an−1�. The
flip of a word � is obtained by changing 0 to 1 and 1 to 0 in
�. The time reversal of the word �a1 , . . . ,an� is the flip of the
word �an , . . . ,a1�. These operations can be used for analyzing
nontrivial properties of data series, like time reversibility �8�.
One striking feature of binary words is that if these words are
extracted from a sequence Xi of independent random vari-
ables with the same distribution, then the binary words dis-
tribution does not depend on the distribution of the Xi’s �5�.
We refer to this property as “i.i.d.-universality” of the distri-
bution of binary words. The consequences are relevant also
for data analysis, as is shown in Ref. �6� where atrial fibril-
lation has been investigated. The histograms of binary words
for atrial fibrillation are extremely close to the i.i.d.-universal
distribution. For normal subjects the histograms are very dif-
ferent �5�. At the moment there exists no theoretical model
for explaining the main features of the histogram of binary
words of normal subjects. The present paper addresses the
specific question of analyzing the modifications of this his-
togram under the basic stress induced by the tilt test. In Fig.
2 we show the histogram of length 4 binary words before and
after the tilt for a typical case. By inspecting these diagrams
for all our patients, we have found out that the frequency of
occurrence of the length 4 binary words

WA = 	�0,0,0,0�,�1,1,1,1�
 �4�

increases from base to tilt, while the frequency of occurrence
of the binary words

WS = 	�0,0,1,1�,�0,1,1,0�,�1,1,0,0�,�1,0,0,1�
 �5�

decreases. The words WA have already been proved to be
useful for analyzing different pathological situations, see for
example, Ref. �3�. We call the words �4�, A-words �A stands

for acceleration� and the words �5�, S-words �S stands for
stationary�. Note that both WS and WA are closed under the
operations of shift and time reversal. One heuristic motiva-
tion for our choice of these two classes of words is that in
rest conditions S-words describe the most common pattern in
the RR sequence while A-words are the most sensitive to
sudden changes. This suggests the introduction of two in-
dexes. The index �A is defined in the following way: let Ab
be the sum of the relative frequencies of occurrence of the
words in WA before the tilt and let At be the sum of the
relative frequencies of occurrence of the same words after
the tilt. Define �A=At−Ab. The index �S is defined analo-
gously: Sb is the sum of the relative frequencies of occur-
rence of the words in WS before the tilt and St is the sum of
the relative frequencies of occurrence of the same words af-
ter the tilt. Define �S=St−Sb.

The values of the symbolic indexes computed in our da-
tabase are reported in Table II. Both the sign tests for the
positivity of �A and for the negativity of �S give a p value
less than 0.0003.

IV. CONCLUSIONS

According to the results of the data analysis presented
here, which should be further validated in larger data sets,
both spectral analysis and symbolic analysis clearly detect
the modification occurring in the RR sequences due to the
tilt. An increment of sympathetic activity is measured by
positivity of �NLFP in spectral analysis and by positivity of
�A in symbolic analysis. A decrement of parasympathetic
activity is measured by negativity of �NHFP in spectral
analysis and by negativity of �S in symbolic analysis. There
are however some differences in the two methods that we
elucidate here.

First, spectral analysis is mathematically more sophisti-
cated than symbolic analysis. For this reason we believe that

FIG. 2. The histograms of length 4 binary words for a typical
case: before the tilt �first row� and after the tilt �second row�. We
have labeled half of the words in the x axis of the first picture and
the other half in the x axis of the second picture. In the y axis of
both pictures we put the relative frequency of occurrence of each
word. In the third row we plot, for each word, the difference of the
frequency after the tilt minus that before.
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the last one can be used and understood more easily. This is
important for avoiding wrong uses of mathematical models.
For example, in the medical literature linear autoregressive
models are often used to estimate spectral densities. How-
ever, it is widely believed that linear models are not always
adequate for describing RR sequences.

Second, data series, for example, long RR series, may
contain many missing values. Methods based on the distri-
bution of short words can easily cope with this problem by
simply avoiding strings containing missing values. Spectral
analysis needs to interpolate missing values according to
more or less arbitrary criteria.

Third, data series are often nonstationary, for example, the
RR sequence soon after the tilt. A method widely used in
time series analysis for reducing nonstationary behaviors is
to differentiate the series. Symbolic analysis, which is based
on coding differences, directly embeds this method.

Finally, note that the values of the relative indexes for
symbolic analysis, in columns 4 and 8 of Table II, are greater

than the corresponding ones for spectral analysis, in columns
4 and 8 of Table I. This seems to suggest that the former
method is more sensitive than the latter.

The application of symbolic methods in the analysis of
RR sequences has a lot of flexibility and can be improved in
several directions: one can consider longer binary words, de-
fine ternary words by using a threshold coding, introduce
different grouping of words, or consider permutation instead
of words. At this stage of the research it is not possible to
state a priori which is the best method. On the base of our
previous work our opinion is that this must be settled case by
case depending on the nature of the data to be analyzed.
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TABLE II. In this table we report symbolic indexes computed with length 4 binary words. All values are rounded. Rows refer to patients.
Column Ab contains the frequencies of the “acceleration” words before the tilt. Column At contains the same after the tilt. Column �A
contains the difference between the first two. Column �a contains the relative difference, i.e., the ratio of the third column to one-half of the
sum of the first two. The remaining four columns are built in the same way by using the frequencies of the “stationary” words.

Symbolic indexes

A-words S-words

Ab At �A �a Sb St �S �s

0.03 0.23 0.20 1.56 0.62 0.27 −0.36 −0.92

0.18 0.31 0.12 0.50 0.30 0.22 −0.08 −0.28

0.00 0.07 0.06 1.72 0.60 0.35 −0.25 −0.53

0.10 0.33 0.23 1.06 0.42 0.23 −0.19 −0.58

0.00 0.02 0.02 1.19 0.65 0.51 −0.15 −0.27

0.05 0.24 0.19 1.34 0.50 0.18 −0.32 −0.94

0.22 0.31 0.10 0.38 0.31 0.22 −0.09 −0.33

0.03 0.17 0.13 1.32 0.61 0.28 −0.33 −0.72

0.03 0.23 0.21 1.60 0.42 0.28 −0.14 −0.39

0.02 0.06 0.04 1.08 0.61 0.39 −0.23 −0.46

0.09 0.23 0.15 0.93 0.45 0.26 −0.18 −0.51

0.04 0.32 0.28 1.55 0.47 0.22 −0.25 −0.70

0.00 0.07 0.06 1.63 0.61 0.43 −0.17 −0.34
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